

Technical support: support@abbkine.com

Website: https://www.abbkine.com

# CheKine™ Pro Catalase (CAT) Fluorometric Activity Assay Kit

Cat #: KTB9040

Size: 48 T/24 S 96 T/48 S

| [ <u>;</u> Q | Catalase (CAT) Fluorometric Activity Assay Kit                                             |     |                               |
|--------------|--------------------------------------------------------------------------------------------|-----|-------------------------------|
| REF          | Cat #: KTB9040                                                                             | LOT | Lot #: Refer to product label |
|              | Detection range: 0.01-10 U/mL                                                              |     | Sensitivity: 0.01 U/mL        |
|              | Applicable samples: Animal and Plant Tissues, Cells, Serum, Plasma or other Liquid samples |     |                               |
|              | Fluorescence Excitation/Emission: Ex/Em=535/587 nm                                         |     |                               |
| X            | Storage: Stored at -20°C for 6 months, protected from light                                |     |                               |

# **Assay Principle**

CheKine<sup>M</sup> Pro Catalase (CAT) Fluorometric Activity Assay Kit can detect animal and plant tissues, cells, serum, plasma and other samples. The principle involves the catalase (CAT) in the detection system breaking down H<sub>2</sub>O<sub>2</sub> into water and oxygen. The residual hydrogen peroxide, in the presence of an enzyme and a fluorescent substance, undergoes a reaction where its fluorescence intensity at an excitation wavelength of 535 nm and an emission wavelength of 587 nm is directly proportional to the concentration of hydrogen peroxide.

# **Materials Supplied and Storage Conditions**

| Kit componente | Size   | )       | Stavaga conditiona          |
|----------------|--------|---------|-----------------------------|
| Kit components | 48 T   | 96 T    | Storage conditions          |
| Assay Buffer   | 60 mL  | 60×2 mL | 4°C                         |
| Reagent I      | 50 µL  | 100 µL  | -20°C, protected from light |
| Reagent II     | 25 µL  | 50 μL   | -20°C, protected from light |
| ReagentIII     | 25 μL  | 50 μL   | -20°C, protected from light |
| Standard (1 M) | 0.4 mL | 0.4 mL  | -20°C, protected from light |

Note: Before formal testing, it is recommended to select 2-3 samples with large expected differences for pre-experiment.

# **Materials Required but Not Supplied**

- Fluorescence microplate reader (the excitation wavelength is 535 nm, and the emission wavelength is 587 nm)
- Black 96-well plate, precision pipettes, disposable pipette tips
- · Refrigerated centrifuge, incubator, ice maker
- Deionized water, PBS (pH 7.0)



· Dounce homogenizer (for tissue samples)

# **Reagent Preparation**

Assay Buffer: Ready to use as supplied; Equilibrate to room temperature before use; Store at 4°C.

**Reagent I:** Ready to use as supplied; Equilibrate to room temperature before use; Unused reagents should be aliquoted and stored at -20°C in the dark, avoiding repeated freezing and thawing.

Reagent II : Ready to use as supplied; Store at -20°C, protected from light.

 $H_2O_2$  ReagentIII: Prepared before use; take 5 µL of ReagentIII and add it to 4.995 mL of deionized water, mix well. Then, take 15 µL of the diluted ReagentIII and combine it with 4.395 mL of Assay Buffer, mixing thoroughly. This solution should be prepared freshly as needed and in the required amount, should be protected from light during use, prepare as needed and use within the same day.

**Working Reagent:** Prepare in the dark just before use; take 50  $\mu$ L of Reagent | and 20  $\mu$ L of Reagent ||, and add them to 4.93 mL of Assay Buffer, mixing thoroughly. This volume is sufficient for 100 tests. Prepare as needed and use within the same day, ensuring protection from light during usage.

**Standard (1 M):** Before use, dilute the standard 10,000 times with deionized water to obtain a 0.1 mM solution, ensuring complete dissolution for later use. Any unused Standard (1 M) should be aliquoted and stored at -20°C in the dark, preventing multiple freeze-thaw cycles.

Note: Reagent I is toxic, ReagentIII is corrosive, so it is recommended to experiment in a fume hood.

Standard setting: Prepare the standard solution as shown in the table below.

| Num.            | Volume of 0.1 mM Standard (µL) | Volume of deionized water (µL) | Standard Concentration (µM) |
|-----------------|--------------------------------|--------------------------------|-----------------------------|
| Std.1           | 100                            | 100                            | 50                          |
| Std.2           | 80                             | 120                            | 40                          |
| Std.3           | 40                             | 160                            | 20                          |
| Std.4           | 20                             | 180                            | 10                          |
| Std.5           | 10                             | 190                            | 5                           |
| Std.6           | 5                              | 195                            | 2.5                         |
| Std.7           | 2.5                            | 197.5                          | 1.25                        |
| 0 (Blank Well ) | 0                              | 200                            | 0                           |

Note: The diluted standard solution is prepared and immediate used, and should not be stored for a long time.

# **Sample Preparation**

### Note: Fresh samples are recommended. If not assayed immediately, samples can be stored at -80°C.

1. Animal and plant tissues: Weigh 0.1 g tissue, add an appropriate amount of Assay Buffer and homogenize on ice. Centrifuge at 10,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.

2. Cells: Collect  $5 \times 10^6$  cells into the centrifuge tube, wash cells with cold PBS, discard the supernatant after centrifugation; add an appropriate amount of Assay Buffer to ultrasonically disrupt the cells 5 min (power 20% or 200 W, ultrasonic 3 s, interval 7 s, repeat 30 times). Centrifuge at 10,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.

3. Plasma or other Liquid samples: Centrifuge at 10,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.

Note: 1. It is recommended to perform a pilot experiment prior to the main assay by selecting 2-3 samples expected to have significant differences, and diluting them to various concentrations using Assay Buffer. Based on the results of this preliminary test and considering the linear range of this kit, which is 0.01-10 U/mL, please refer to the table below for



#### guidance on dilutions (for reference only).

| Sample          | Dilution Fold | Sample               | Dilution Fold |
|-----------------|---------------|----------------------|---------------|
| 10% Mouse Brain | 30-60         | 10% Mouse Lung       | 150-300       |
| FBS             | 2-10          | 293 cells            | 4-10          |
| Human Saliva    | 30-60         | L929 Cell Supernatan | Undiluted     |
| Human Urine     | 30-50         | 10% Tobacco Leaf     | 2-6           |

2. If the protein concentration of the sample is need to determined, it is recommended to use Abbkine catalog number: KTD3001 Protein Quantification Kit (BCA Assay) to measure the protein concentration of the sample.

# **Assay Procedure**

1. Preheat the fluorescence microplate reader to 37°C. The excitation wavelength is 535 nm, and the emission wavelength is 587 nm.

2. Sample measurement (The following operations are operated in the black 96-well plate).

| Reagent                                                                                         | Test Well (μL) | Control Well (µL) | Standard Well (µL) |
|-------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------|
| Sample                                                                                          | 25             | 0                 | 0                  |
| Standard                                                                                        | 0              | 0                 | 25                 |
| Deionized water                                                                                 | 0              | 0                 | 25                 |
| H <sub>2</sub> O <sub>2</sub> Reagent III                                                       | 25             | 25                | 0                  |
| On the microplate shaker, shake for 10 s, then allow the reaction to proceed at 37°C for 5 min. |                |                   |                    |
| Working Reagent                                                                                 | 50             | 50                | 50                 |
| Sample                                                                                          | 0              | 25                | 0                  |

Mix well and let stand at room temperature in the dark for 10 min. On the fluorescence microplate reader, set the excitation wavelength to 535 nm and the emission wavelength to 587 nm. Measure the fluorescence values of each well, recording them as RFU<sub>Test</sub>, RFU<sub>Control</sub>, RFU<sub>Standard</sub>, and RFU<sub>Blank</sub>. Calculate  $\Delta$ RFU<sub>Test</sub>=RFU<sub>Control</sub>-RFU<sub>Test</sub>, and  $\Delta$ RFU<sub>Standard</sub>=RFU<sub>Standard</sub>-RFU<sub>Blank</sub>.

# **Data Analysis**

1. Drawing of the standard curve

With the concentration of the standard solution as the x-axis and the  $\Delta RFU_{Standard}$  as the y-axis, draw the standard curve, get the standard equation, and bring the  $\Delta RFU_{Test}$  into the equation to get the x value ( $\mu M$ ).

2. Calculation of CAT activity:

(1) Calculated by sample protein concentration:

Active unit definition: Under  $37^{\circ}$ C conditions, one unit of activity is defined as the amount that decomposes 1 nmoL of H<sub>2</sub>O<sub>2</sub> per min per mg of protein.

#### CAT(U/mg prot)=x×f÷5÷Cpr

(2) Calculated by fresh weight of samples:

Active unit definition: Under  $37^{\circ}$ C conditions, one unit of activity is defined as the amount that decomposes 1 nmoL of H<sub>2</sub>O<sub>2</sub> per min per g of tissue.

CAT(U/g fresh weight)=x×f÷5÷W

(3) Calculated by cells:

Active unit definition: Under 37°C conditions, one unit of activity is defined as the amount that decomposes 1 nmoL of H<sub>2</sub>O<sub>2</sub> per



Version 20241220

min per 10<sup>4</sup> of cells.

#### CAT(U/10<sup>4</sup> cell)=x×f÷5÷N

(4) Calculated by volume of liquid samples:

Active unit definition: Under  $37^{\circ}$ C conditions, one unit of activity is defined as the amount that decomposes 1 nmoL of H<sub>2</sub>O<sub>2</sub> per min per mL of sample.

CAT(U/mL)=x×f÷5

Cpr: Sample protein concentration, mg/mL; 5: Reaction time, 5 min; f: Sample dilution fold; W: Sample weight, g; N: The total number of cells, 10<sup>4</sup>.

# **Typical Data**

Typical standard curve-data:



Figure 1. Standard Curve for CAT.

Example:

1. Take 0.16 g of mouse brain tissue and add 1 mL of Assay Buffer to homogenize and grind it. After centrifugation, take the supernatant, dilute it 50 times, and proceed with the measurement steps. Using a full-black 96-well plate, the following readings were obtained: RFU<sub>Test</sub> is 10,395, RFU<sub>Control</sub> is 16,600, and RFU<sub>Blank</sub> is 305. Thus,  $\Delta$  RFU<sub>Test</sub> =16,600-10,395=6,205. With the standard curve equation being y=568.3x+501.83, the H<sub>2</sub>O<sub>2</sub> concentration calculated is 10.04 µM. Therefore, CAT (sample)=10.04 ×50÷5÷0.16=627.5 U/g fresh weight.

2. For fetal bovine serum, after centrifugation and taking the supernatant, dilute it 5 times before continuing with the assay procedures. Using a full-black 96-well plate, the following readings were obtained:  $RFU_{Test}$  is 6,380,  $RFU_{Control}$  is 13,390, and  $RFU_{Blank}$  is 305. Thus,  $\Delta RFU_{Test}$ =13,390-6,380=7,010. With the standard curve equation being y=568.3x+501.83, the H<sub>2</sub>O<sub>2</sub> concentration calculated is 11.45 µM. Therefore, CAT (sample)=11.45×5÷5=11.45 U/mL.

# **Recommended Products**

| Catalog No. | Product Name                                                 |
|-------------|--------------------------------------------------------------|
| KTB9050     | CheKine™ Pro Malondialdehyde (MDA) Fluorometric Assay Kit    |
| KTB9300     | CheKine™ Pro Glucose Fluorometric Activity Assay Kit         |
| KTB9041     | CheKine™ Pro Hydrogen Peroxide (H₂O₂) Fluorometric Assay Kit |

# **Disclaimer**

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes. For your safety and health, please wear a lab coat and disposable gloves.

